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OPTIMAL LOW THRUST TRAJECTORIES USING D IFFERENTIAL
INCLUSION CONCEPTS

Victoria Covcrslqn(_:-(farroll
Steven N. Williams

A direct optimization method based on differential inclusion concepts has been developed and used
to compute low thrust trajectorics.  This ncw formulation removes explicit control dependence from the
problem statement thereby reducing the dimension of the paramcter space of the resulting nonlinear
programm ing problem. A simple example of a two-dimensional gravity-free trajectory involving a
maximum velocity transfer to a rectilincar path is discussed. Three interplanctary trajectory examples, an
Earth-Mars constant specific impulse transfer, an Earth-Jupiter constant specific impulse transfer, and an
Nar[h-Venus-Mars variable specific impulsc gravity assist, arc also included, An evaluation of the
technique's performance is provided,

Introduction

Low thrust electric propulsion systems typically have their greatest benefit for high
energy planetary missions. Missions that have been examined include main belt asteroid
rendezvous, comet rendezvous, outer planet and Mercury orbiters, Pluto flyby and solar
probe missions. ! Most low thrust mission design software use calculus-based algorithms
that can be subdivided into two main classes: indirect and direct. “I’ he indirect approach
uses the calculus of variations to obtain a set of necessary conditions whose solution
ensures a local extremum of the objective function. In contrast, direct methods use
gradients of the objective function to search the parameter space and locate a local
cxtremum. Direct methods often transform optimal control problems into nonlinear
programming problems (NLP). With these methods, finite approximations to the state
differential equations are exploited. ‘T'he objective function is then directly minimized by
varying di screte values for the states and controls.

A direct method based on differential inclusion concepts has been developed and
used to compute low thrust trajectories, This new formulation removes explicit control
dependence from the problem statement thereby reducing the dimension of the parameter
space for the N] .P. As a consequence of eliminating the control parameters, fewer
nonlinear constraints arc required to represent the dynamics of the problem,



Problem Statement

The equation of motion for aspacecraftsubject to a single gravitational source is
given through the rocket equation?

= g(r) 4 6= g(r) 4 1° L)

where r is the position vector, g(r) the gravitational force per unit mass vector, T the
engine thrust, @i a unit vector in the thrust direction, 1‘ the thrust pcr unit mass vector and m
the vehicle mass. 'T'he model used for the spacecraft’ s propulsion system, whether constant
specific impulse (csi) or variable specific impulse (vsi), directly affects the relationship
between control effort and propellant consumption. The equations that govern the change
in mass for both csi and vsi systems arc given below. The variable c is the propellant’s
exhaust velocity.

csi case: S‘({:‘ . :le ?
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The mass-control relationships described above may be written in a variety of
equivalent ways. The expressions shown in equations (2) and (3) are chosen to simplify
the following derivation. Define a state vector x that for the csi caseis xT=[rT VT v]
where v is the velocity vector and 7y = in (m) and for the vsi caseis x Fr7 v o] where

o= T}% The state rates for the two systems arc then obtained through equations (1)-(3),
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‘1’0 determine an optimal trgjectory, controls (T or 1) must be chosen to satisfy any

boundary conditions on the. states while minimizing an objective function.
Recently, it has been shown that many optimal control problems can bc described
by functional differential inclusions. 3-6 Differential inclusions represent the dynamics of a
problem in terms of attainable sets rather than differentia equations, Seywald®
demonstrated how differential inclusions could be used to solve onedimensionall1 trajectgry
Y

optimization problems. Examination of equations (4)-(6) and (7)-(9) show that a and -- d(':

contain information about the. control magnitude but not the control direction, so for three-
dimensional trgjectories where a control direction is needed, representing the problem with
differential inclusionsis not straight-forward, 1 lowever, if the v equations arc manipulated
to produce a scalar equation of the form given in equations (10)-(1 1), explicit appearance of
the control is removed from the differential equations.

CSi case! . (10)
- " ¢ - o) Y] e2

Vs case: , (11)
(V- g’ (v - gr)= 28:

This simple manipulation has eliminated the control variables from the problem
statement and replaced them with anonlinear scalar constraint on the states and state rates.
‘I-he reduced-order problem consisting of equations (4), (6) and (1 O) for csi and (7), (9)
and (1 1) for vsi can be formulated as a nonlincar programming problem (NI.P).To
convert to the NL.P form, the total maneuver time is divided into N segments. The end
points of each segment are defined as the left and right nodes and denoted by subscripts 1
and r. Equal segment lengths ts arc assumed and first-order approximations are used for
the derivatives across each segment. State rates arc represented as:

P L O i T | I (12)

‘I”he position derivative approximation given above is substituted into equations (4) and (7)
and the equation is evaluated at the segment center yielding 3 lincar equality constraints for
cach segment. A total of 3N lincar equality constraints arc needed for the total trajectory.
Fixed time ty maneuvers arc assumed, therefore tg = tg/N.



t
S inz--—v‘-)-io (13)

The nonlinear scalar constraint given in equations (1 O) and (11) is evaluated at the segment
center and becomes the nonlinear equality constraint below. A totalof N nonlinear
constraints are required for the entire maneuver.

csi case: " , (14)
(vl" Y tsg(rc)) (vr’ Vi tsg(rc)) - 202(7{'71) =0

Vs case: " (15)
(v,-vl- tsg(rc)) (Vr‘ V- tsg(rc)) - 2‘5((1[“ a,)= 0

r+r
where r = - ?___r

The mass-related variables (y,a) evolve subject to the following nonlinear and linear
inequality constraints. The inequality constraints demonstrate the differential inclusion
concept of a state rate being contained in a set rather than being dictated by a differential
equality constraint. Note that this formulation does not assume a control structure for the
csi case. The control structure for the tragjectory is contained in they values.

cs case: 0<-(, - v cx}{!r% Y') c<TH (16)
CS case: Y- <0 (17)
VS case: 0<a, - o<oo (18)

A Simple Example

For illustrative purposes, a simple two-dimensional gravity-free csi example that
involves a maximum velocity transfer to arectilinear path is discussed. This problem was
selected because the solution can be obtained analytically through the indirect approach
outlined in Bryson and Ho [7]. Bryson and } 1o formulate the problem in terms of thrust
acceleration where in this formulation the thrust magnitude divided by the current massis
used. The optimal solution consists of a constant thrust magnitude T and a time-varying
control angle B(t) described by the well-known bilinear tangent steering law. The problem
statement is to transfer a particle from rest at the origin to a path parallel to the x-axis a
distance h away in a given time tg arriving with zero velocity in the y direction and




maximum velocity in the x direction. The following conditions were placed on the transfer.
The initial mass of the vehicle m(1o), assumed to consist of only propellant, was set to
unity. The thrust magnitude and the total maneuver time ty were also set to unity. The
vertical distance h was chosen to be ().1 and the total number of segments N used to
discretize thetrajectory wasselected as 10.

Figures 1-4 display some characteristics of the optimal tragjectory. Fi gure 1 shows
the trgjectory, Figure 2 the velocity profile, and Figure 3 the. propellant mass history.
Cases were also ran with alimit on the propellant mass and the optimal solution used all
available propellant to maximize its fina velocity. Figure 4 contains two curves for the
control angle B. Asdescribed in [7], indirect methods show that the optimal control angle
is given by the bilinear tangent steering law given by equation (19). The values of the
congtants for this problem are ¢1 =- 3,38*10-5, ¢2=-3.68*10-2, c3=-1.00* 10°1, and c4=-
2..87* 10-2. Using these numbers, equation (19) was used to calculate the control angle at
the segment endpoints.

an (B) =~y o (19

The second curve comes from post-processing the output from the differential inclusion
NI.P and is plotted at the segment centers. If the approximations for the velocity rate of
change shown in equation (12) are used, the control angle from the differential inclusion
approach is calculated through the equat ion = tarr‘(vy/vx). The two curves, onc supplied
through an indirect method and the other through a direct method, verify that the two
solutions arc nearly identical,

Interplanctary Trajectories
-Motivation

The ultimate goal of this research is to develop a technique which can be used to
identify potential trajectories for low thrust missions. When planning conventional
interplanetary missions (using chemical propulsion), there is a wide array of tools and
techniques available to design trajectories. Typically, trajectories are developed through a
series of steps beginning with simple conic approximations treating planets as point masses
and eventually including an optimization of deep space maneuver times and planetary
flybys. There may or may not be intermediate steps using multi-conies, but the process




typically concludes with a numerical integration which incorporates a force model that may
include multi-body gravitational effects, spherical harmonics, drag, solar pressure, and
even relativistic effects. Generally, each stcp of the process is accomplished with a

different piece of software.
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Figure 3-4: Mass and Control Angle Versus Maneuver Time

Unfortunately, a similar array of software tools for designing low thrust missions
does not yet exist. One reason is that low-thrust trajectories arc inherently more difficult to
model. Instead of a discrete. set of maneuvers and planetary encounters, a thrust direction
and magnitude must be optimized at each instant to minimize the objective function (or
maximize final mass), Low thrust trgjectories at JP1. are computed with the VARIable
thrust Trajectory Opt imization Program (VA RI TOP). 1*his program is a general purpose
two-body, sun-centered, low-thrust trajectory optimization and analysis program intended
for preliminary mission feasibility studies. 1t optimizes the trajectory by solving a two-
point boundary value problem (I'PBVP) that involves numerical integrat ion of the state and
costate equations. VARITOP is awell established program which has been used since the
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early 1960s. 1( is used in (his paper as a standard with which to compare the results
obtained with the different ial inclu sion approach. VA RI'TOP contai ns several propulsion
models, but the primary concern here is with the variable specific impulse (vsi) and
constant specific impulse (csi) models. For the csi cases it is also important to distinguish
between a constant power source (such as nuclear) and a variable source (such as solar
electric). Only the constant power option is addressed in this paper.

Examples of both vsi and csitrajectorics, comparing results between the differential
inclusion (DI) technique and VARITOP follow. It is hoped that the role that DI will play in
the futureis as a preliminary design tool - not unlike the way conies are used for impulsive
trgjectories. One of the undesirable characteristics of using an indirect approach
(VARTITOP), isthat a “starting guess" for the Lagrange multipliers that correspond to the
initial state must be determined. It issometimes U seful to associate a region of convergence
with the initial multiplier estimates. If the initial estimates are outside this region, it may be
very difficult to achieve a converged solution with VARITOP. The D] technique does not
require an estimate of Lagrange multipliers, but may be used to generate these multipliers,
thereby providing very good initial starting conditions for VARITOP.

Initial Lagrange Multiplier Generation

The nonlinear programming problem (N1.P) software N}’SO]. Version 4.0°was
used to obtain the differential inclusion mission scenarios described in the next section.
Upon converging to a finite-dimensional approximation of the optimal solution, NPSOL.
provides estimates on how constraining variables affect the optimal objective function. in
the following mission scenarios, the initial position and velocity have been specified.
Hamilton-Jacobi theory states that on the optimal trajectory, the costate (l.agrange
multipliers) is the sensitivity of the objective function with respect to the states,’ and
therefore initial costates arc available from NPSOL.. If any initial condition is not specified
but allowed to be optimized, the initial value of the corresponding costate is zero.

Traicctory Examples

Three examples are shown that exercise various aspects of the differential inclusion
(D) approach. The first is an Earth-Mars csi trajectory. It is a fairly straightforward case,
but includes alarge coast arc. It is significant that the D] approach accurately models this
coast arc. The second example shown is a csi Harth-Jupiter trajectory which demonstrates
that this approach may be used for outer solar system trajectories with their longer flight
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times. The final caseisavs Earth-Venus-Mars trgjectory and demonstrates the ability to
model planetary gravity assists.

Figure 5 shows the trgjectories for the csi arth-Mars rendezvous computed by the
Dl and VA RITOP software. The spacecraft departs Earth on November 19, 1994 with
Farth's orbital velocity. A rendezvous with Mars occurs 184 days later on May 22, 1995.
A constant power source of 450 kW and a specific impulse of 4860 seconds is used, For
the DI approach, the total transfer time was divided into 20 segments. The finite
approximation of the D] approach computes a coasting interval (denoted by dots) between
January 12 through March 2.8. The VARITOP solution includes a coast arc that begins on
January 10, 1995 and terminates on March 27, 1995. The two coasting periods differ by
only a few days. In each case, the spacecraft began the transfer with an initial mass of
10,000 kg. VARITOP computes a final massof 7185 kg where DI finishes with 7149 kg.
The 1)1 approach gives an excellent first-order approximation to the continuous optimal
solution.
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Figare 5: Earth-Mars CSI Trajectorics From DI (left) and VARITOP (right)

The next example shown in Figure 6 is an liarth-Jupiter csi 680 day transfer. Duc
to the larger transfer time, 30 segments were used for the 131 formulation. The spacecraft
departs Earth on May 2S, 2001, burns continuously until July 5, 2002, has a brief coast
period until August 8, 2002, and then burns until the. rendezvous with Jupiter on April S,




2003. The power source supplies 115 kW and the propulsion system has a specific
impulse of 4000 seconds. The DI software computed a coasting period of only 2 days
beginning on July 28,2002. This coasting arc is too small to be detected on the plot. Both
trajectories began with an initial mass of 10,000 kg. VARITOP obtained a final mass of
3798 kg and D] 3526 kg. The flight time for this trgjectory is more than 3.5 times as long
as the previous Mars trajectory. One might expect that as flight times get longer, the D]
formulation will experience problems because the larger scgments give a less accurate
representation of the trgjectory. This was not a problem in this case. Figure 6 shows quite
good agreement between the two different approaches. Some experimentation was done
with Pluto trajectories and these seemed to be more sensitive to this effect,
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Figure 6: liarth-Jupiter CSI Trajectorics li-em DI (Ieft) and VARITOP (right)

The final trgjectory shown in Figure 7 isavsi liar[h-Venus-Mars trgjectory with an
unpowered gravity assist at Venus. The spacecraft departs on January 1 (), 2001, flies by
Venus on May 10 and rendezvous with Mars on March 21, 2003. in each case, the initial
mass is 5,000 kg and the power source provides 33.9 kW. For the DI approach, each leg
of the transfer was divided into 40 segments. Note that in Figure 7 the discrete nature of
the D] approach is apparent after the ftyby of Venus when the spacecraft is traveling at a
higher speed. The final mass predicted by DI was 3532 kg while VARITOP predicted
3577 kg.



I'he modeling of a planetary flyby requires the addition of two nonlinear equality
constraints for each flyby. Since only unpowered flybys are considered, the first constraint
stare that the magnitude of the spacecraft velocity with respect to the flyby body v

. is
constant. In equation (20), v!" and vOut arc the heliocentric velocities before and after the
flyby. The planet’s heliocentric velocity is denoted by vy,

Vlnw - v()ulc‘0 N (V]n» Vp)T(.Vln' Vp) ) (V()ul_ VP)T(VOM‘ vp): 0 (20)
I'he second constraint relates the flyby radius R of the spacecraft from the body to the
turning angle 6. The flyby body’s gravitational constant is denoted by 1

In 11y /Out
. - V v v V
§=2sin"![- -1 ;| = cos™! p)
14 RV v?

(2
L )

Using trigonometric identities on equation (21), the following constraint results
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To usc VARTTOP to compute flyby trajectories, create values are required after
each gravity assist. Since the position of the intermediate body is specified, the value of the
costate conjugate to the position is supplied by the NI.P solver. However, the costate to
the velocity is not available since the incoming and outgoing velocity is to be optimized
subject to the two constraints given in equation (20) and (22). Therefore, optimal control
theory is used to calculate an estimate for the velocity costate Ay. Costate estimates from
the converged differential inclusion code were used to initiate VARITOP for the Farth-
Venus-Mars trajectory.

A, =g(r)— vrt M|

s

(23)

Conclusions & Recommendations for Future Work

This paper discusses a technique for calculating optimal low-thrust trajectories
using afinite dimensional approximation to the continuous time problem. The differential
inclusion technique formulates a nonlinear programming problem (NI .P) where the control
parameters are eliminated resulting in a scalar constraint on the states and state rates. The
parameter space of the resulting NI.P is the.rcby reduced over other direct methods.

The VARITOP trgectories shown in this paper were obtained using the initial
lLagrange multiplier estimates from the differenial inclusion (I>1) solution. A significant
advantage of using the DI software to obtain initial 1.agrange multipliers for VARITOP is
that the user can walk away from the computer and work on something else while the DI
code runs. Using VARITOP aone with only the user's best guess for the initial multipliers
may take aslong if not longer to obtain the same results as the DI/VARITOP combination,
however, the user’s entire attention must be given to VARITOP due to it's interactive
nature. The drawback to using DI alone is its finite approximation to the continuous
problem. To increase the accuracy of the differential inclusion solution, the number of
segments can be increased but this will be at the expense of computation time required to
obtain a solution.

Wec believe that the DI approach offers a powerful ncw technique for computing
low thrust trajectorics. Results demonstrate good agreement with established methods for a
variety of missions. in the future, the technique will be expanded to include a variable
power source so that missions such as solar electric maybe examined. Also, strategies for
reducing the computation time will be explored.
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